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ABSTRACT

The instability of zonally and temporally invariant, equatorial, zonal flow is found to be tied directly to the
presence of critical layers within the fluid. Insight into the mechanism of instability can, therefore, be gained
through the use of the ideas of wave over-reflection. For idealized flows, where it can be directly applied, over-
reflection successfully predicts the phase speed and wavelength of the most unstable waves. In complex flows,
where application is difficult, the character of the energy exchanges is consistent with the ideas of over-reflection.
Whereas at the scales of the tropical instability waves, instability arises by extracting energy from the background
state through varying mixes of baroclinic, barotropic, and Kelvin—Helmholtz mechanisms (depending upon the
details of the flow), the importance of the critical layer as the root of instability suggests that attempting to
classify the instability through these energy conversions is misleading.

1. Introduction

Satellite views of the tropical Pacific Ocean reveal
dramatic oscillations embedded in the sharp tempera-
ture front between the eastward flowing North Equa-
torial Countercurrent (NECC) and the westward-flow-
ing South Equatorial Current (Legeckis 1977). These
oscillations, referred to as Tropical Instability Waves
(TIWs), possess periods in the range of 20-30 days
and zonal wavelengths of the order of 1000 km. They
have been observed in both the tropical Atlantic and
Pacific (for reviews see Weisberg 1986; Luther and
Johnson 1990; McCreary and Yu 1992) and have been
shown to be related to instability of the intense zonal
mean flows present in the equatorial oceans (Philander
1976, 1978; Cox 1980). Recently, Luther and Johnson
(1990) investigated the energy-conversion mecha-
nisms on the time- and space scales of the TIWs. They
found a marked temporal variation in the energy con-
versions suggesting that the instabilities may be due to
different causes at different times. Because TIWs ap-
pear in both the Atlantic and Pacific Oceans, they ap-
pear to be a robust feature of equatorial circulations.
Since they have been observed to radiate energy down-
ward and westward (Harvey and Patzert 1976; Weis-
berg et al. 1979) and drive significant fluxes of heat
and momentum (see McCreary and Yu 1992), they are
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part of the natural limiting mechanism for the wind-
driven acceleration of the strong, equatorial zonal mean
flows in the near-surface zone.

Philander (1976, 1978), investigating the stability of
equatorial flow in a 21/p-layer model, found that the
fastest growing instabilities occur at zonal wavelengths
of O(1000 km) and at periods of 0(20-40 days). En-
ergy considerations showed that the instabilities drew
their energy primarily from the mean kinetic energy
and thus the mechanism was analogous to a classical
barotropic instability. Philander concluded that the in-
stability arose from the intense shear between the west-
ward flowing South Equatorial current (SEC) and the
eastward North Equatorial Countercurrent (NECC).
Limited parameter variations showed that the period of
these instabilities was most sensitive to the amplitude
of the mean flow, whereas the wavelength was most
sensitive to the horizontal scale of the mean shear.
However, the 21/5-layer formalism does not accurately
represent the detailed vertical structure of the strongly
sheared equatorial flows so that vertical processes may
not be adequately addressed. Will these sensitivities re-
main when vertically realistic mean flows are consid-
ered? Cox (1980), using a multilevel numerical model,
showed that eddy variability in the tropical ocean does
arise primarily through the process of barotropic insta-
bility but that baroclinic instability is significant as
well. Weisberg and Weingartner (1988 ) suggested that,
although the satellite imagery shows maximal SST
variability between the NECC and SEC, the more likely
region for instability was the cyclonic shear region be-
tween the SEC and the Equatorial Undercurrent (EUC)
where the flow is divergent. Recently, McCreary and
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Yu (1992) have shown that the presence of the strong
temperature front can dramatically destabilize zonal
flows and in fact leads to an entirely new band of in-
stability with rapid wave growth.

The stability of equatorial mean flows has been re-
viewed recently by McPhaden and Ripa (1990). Ripa
(1983) derived general stability criteria for zonal flow
on the equatorial 8 plane for the one- and two-layer
cases. One sufficient condition for stability is a gener-
alization of the Rayleigh—Kuo condition that the me-
ridional gradient of potential vorticity along isopycnals
be everywhere non-negative. The other is a statement
that the mean flow be noncritical with respect to the
phase speed of the long gravity waves. The generaliza-
tion to the n-layer case (Ripa 1986, 1991) showed that
the stability criterion becomes harder to satisfy as »
increases, suggesting that a general stability condition
for the continuously stratified case may not exist. Long
(1987) and Holm and Long (1989) have derived a suf-
ficient condition for zonal flow stability for the contin-
uously stratified case in the long-wave limit. Their re-
sults show that, in theory, all equatorial flow is poten-
tially unstable to short-wave disturbances (k — ).
They found that the growth rate is proportional to k
suggesting, however, that the long-wave approximation
would break down rather quickly implying that the
long-wave problem is ill-posed. Their work was based
upon the energy method and hence inviscid. The intro-
duction of horizontal viscosity would provide an upper
wavenumber cutoff of this growth rate at some finite k
and, therefore, removes this difficulty in practice.

The simplist model of baroclinic instability is that
due to Eady (1949). In Eady’s model with linear shear
(i.e., constant U,) the instability can be traced to the
coupling of two boundary trapped waves that owe their
existence to the presence of meridional temperature
gradients at the upper and lower surfaces. Stone (1966,
1970) addressed an ageostrophic version of the Eady
problem and discovered two additional short-wave so-
lutions. In most cases, these short waves are slowly
growing, however, for mean flows with small meridi-
onal scales, their growth rates are enhanced so that they
are comparable to (although still smaller than) that of
the Eady mode. Tai (1983) showed that the additional
roots found by Stone could be related to over-reflection.
Nakamura (1988), using an ageostrophic version of
Eady’s model, addressed Stone’s additional short-wave
solution in more detail. He noted that this solution
could be thought of as the coupling of one of the bound-
ary waves with an inertia—gravity wave trapped to the
inertia-critical level (where f? = [0 — kUT?).

A physically illuminating framework for understand-
ing the mechanism of linear instability is based on the
concept of wave over-reflection. It was developed in
the late 1970s and early 1980s by Lindzen and his col-
laborators (Lindzen 1974; Lindzen and Tung 1978;
Lindzen et al. 1980; Lindzen and Rosenthal 1983;
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Lindzen and Barker 1985) following the work of Miles
(1957), Jones (1967, 1968), and Acheson (1976);
Lindzen (1988) provides a nice overview. They argued
that, except for instabilities that were mass redistrib-
uting (e.g., Rayleigh—~Bernard convection, CISK), the
mechanism for instability could be viewed as the self-
excitation of waves through continuous over-reflection.
Over-reflection, a process by which a wave can be am-
plified upon reflection at a critical surface, was first
noticed in the late 1950s by Miles (1957 ) in connection
with propagation of sound into a vortex sheet. The
over-reflection of gravity waves appeared in the work
of Jones (1968), who showed that a linear wave prop-
agating toward a critical layer can be over-reflected for
Ri < 14, suggesting a link between over-refiection and
instability. Lindzen (1974) hypothesized, and later
showed, that if an over-reflected wave packet was at
least partially reflected back toward an over-reflecting
critical surface (by a wall, a turning latitude, a sharp
change in N2, etc.), then instability could result. (The
product of the reflection coefficient R, and the over-
reflection coefficient R, need only be greater than one).
Under these conditions, the distance between the re-
flecting and over-reflecting surfaces and the wave prop-
agation characteristics in the region between them cre-
ates a quantization condition, which determines the
phase speed and wavelength of the most unstable
waves. In the absence of damping, the transit time of
wave energy back and forth across this region (at the
waves group velocity), in concert with the intensity of
the net over-reflection, R,R,, determines the growth
rate of the quantized wave modes. An appealing aspect
of the over-reflection ideas is that it gives a physical
explanation why the classical necessary conditions for
instability (Rayleigh—Kuo inflection point theorem,
Charney-—-Stern theorem, Miles—Howard theorem,
Howard semicircle theorem) are necessary, but not suf-
ficient, for instability since the geometric arrangement
of the various surfaces, whose existence is implied by
these theorems, is important as well. An important
point to realize is that the energy exchanges responsible
for wave growth occur at the critical surface where the
over-refiection and wave—mean interactions take place.
The recent paper of Qiao and Weisberg (1995), pre-
senting results from the Tropical Instability Wave Ex-
periment, concluded with the statement ‘Barotropic in-
stability as a mechanism for wave generation is quali-
tatively understood, but the selection of the central
frequency and wavenumber . . . requires more theo-
retical guidance.”” The strength of the ideas of wave
over-reflection, as will be shown, is that they supply
some of that guidance. _

This paper investigates the linear spectral stability of
temporally and zonally invariant zonal flow in a con-
tinuously stratified, equatorial ocean. We will argue
that the instabilities that dominate in flows with oceanic
scales are associated with the presence of critical layers
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within the fluid. This suggests employing the ideas of
over-reflection to gain insight into the mechanism of
instability. In addition, we will show that these insta-
bilities get their energy from the background state by
smoothly varying mixes of baroclinic, barotropic, and
Kelvin—Helmbholtz-like mechanisms as the flow scales
change. Therefore, classifying the instability through
mean eddy energetics may be misleading. In section 2,
we begin by formulating the ordered perturbation ex-
pansion and include a brief description of the numerical
eigenvalue solvers. Following this is an overview of
the ideas behind wave over-reflection with a simple
application to barotropic flows in the equatorial ocean.
In section 4, we present the results of the stability anal-
ysis for a series of flows of varying realism for the
equatorial oceans. Here we show that the fastest grow-
ing instabilities have their origin rooted in the critical
surface, and thus they can be understood through the
concept of over-reflection. We also present some re-
sults for more realistic oceanic flows, We finish with a
summary in section 5.

2. Model formulation
a. Equations

The model derives from a perturbation expansion in
the wave amplitude, ¢, and assumes a background state,
po and Uy, to be zonally and temporally invariant and
in thermal wind balance. The expansion proceeds from
the prescribed, zonally invariant background state at
O(1), through the wave state at O(¢), to the wave-
induced adjustment of the background state at O(¢?).
Wave~wave interactions, O(e?), are not considered in
this linear formulation because 1) the interaction of the
waves with the intense background flows should dwarf
them and 2) the large wave speeds near the equator
make it more difficult for wave energy to collect and
to amplify. A long-wave version of this model was used
by McPhaden et al. (1986, 1987), Rothstein et al.
(1988), and Proehl (1990) in studies of stable wave-
mean flow interactions in the equatorial ocean. The
present model is an extension of their system to allow
for short waves and high frequencies. The strengths of
the model are that it has an unambiguous separation of
the wave and background states, it permits their effects
on each other to be computed simply, and it is com-
putationally inexpensive. Its weaknesses are that it as-
sumes an infinite zonal domain and requires zonally
and temporally invariant background states (as in Cox
1980). The assumption of a thermal-wind background
state is not very restrictive in practice as equatorial
background flows are observed to be very nearly in this
balance.

The physical model is formulated on an equatorial 3
plane, and the dynamics of the perturbations are as-
sumed to be linear, inviscid, hydrostatic, and Boussi-
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nesq. The O(¢) governing equations for harmonic per-
turbations, e“#*~°", linearized about the background

state are
tkUgu + vUoy + WUy, — Byv + tkp = tou, (la)
tkUgv + Byu + p, = Lov, (1b)
tkUgp + vpo, + wpg, = 10p, (1c)
thku + v, + w, =0, (1d)
gp + pxp: =0, (1le)

where the total density is given by p' = pg + po(y, 2)
+ ep(x, ¥, z, t). The equations are written in this form
to highlight the role of the complex wave frequency o
as an eigenvalue. Instability is then signified, in the
usual way, by a nonzero ¢; [ =Im(s)]. We eliminate
p and w in favor of u, v, p to obtain three equations in
three unknowns. This set was chosen to avoid the prob-
lems associated with solving a one-variable problem
(Proehl 1991).

In the present study, we choose to address only back-
ground states symmetric in the meridional direction,
leaving the effects of flow asymmetry for another
study. This simplification allows the doubling of the
meridional resolution by considering only the southern
half of the meridional domain and imposing symmetry/
antisymmetry at the equator. The conditions in the me-
ridional direction, then, are v = 0 at y = y, and either
symmetry of v (and antisymmetry of u and p) or anti-
symmetry on v (and symmetry of u and p) aty = 0.
The boundary condition in the vertical is that w = 0 at
top and bottom.

b. Numerics

The equations are cast into finite difference form on
a grid spanning y, < y < 0 and — H < z < 0 with grid
spacings 6y, 6z. The u and p variables share positions
in y shifted 140y to the north of the v points. In the
vertical all three variables are shifted 146z upward
from the bottom.

To investigate the stability of a particular mean state
the dispersion space is three-dimensional (o,, o;, and
k). Consequently, the 2D spectral sweep (o,, k) used
in the long-wave studies (McPhaden et al. 1986; Proehl
1988, 1990) to locate resonances becomes computa-
tionally prohibitive. To alleviate this problem, we em-
ploy two efficient eigenvalue solvers. The first is a
solver developed by Cullum and Willoughby (1986),
which employs a Lanczos procedure to efficiently com-
pute the eigenvalues and vectors of very large, but
sparse, matrix systems. Its strength is that it finds es-
timates for all the eigenvalues within a defined region
in complex frequency space (o,, o;). This solver is
used to obtain the set of most rapidly growing eigen-
values (largest o,) at a particular wavenumber, k. The
Lanczos procedure requires only the nonzero elements
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of the matrix, so it is memory efficient. Tests on the
no-flow problem yield eigenvalue estimates to within
~1/3% of the known eigenvalues. .

The companion eigenvalue solver was developed in-
dependently by McCreary (1991, personal communi-
cation) and has been described by Fukamachi (1992).
It involves the straightforward approach of solving a
forced version of the eigenvalue system over a grid of
initial guesses for the eigenvalues. For each of these
guesses, it computes an estimate for the inverse of the
solution. A surface is then generated in the (o,, 0;)
space and the locations of the zeroes of this surface are
estimated (i.e., where the amplitude — o). The strength
of this solver is that it is very efficient if it is given a
small enough area to search, and it is naturally suited
for tracing out the dispersion curve as a function of k
once an eigenvalue is known at a particular k. It has a
possible weakness that arises when two complex
eigenvalues are not well separated in dispersion space.
This problem occurs when two distinct dispersion
curves approach each other in the complex plane. The
result of an encounter of this type is that the solver
continues by following the fastest-growing root re-
gardless of the physical wave structures. In our case,
where our interest is in the fastest growing instability,
this is actually beneficial. If one was interested in fully
tracing both curves, both roots would need to be found
on both sides of the crossover and then they could be
traced outward independently with a relatively small
search box.

Plumb (1983), Hayashi and Young (1987), Ripa
(1990), and others have pointed out that the signifi-
cance of the energy conversions in the energy equation
have to be viewed with caution. One difficulty lies in
the possibility, in some cases, for instabilities to exist
with positive, negative, or zero energy. Consequently,
a positive mean-to-eddy energy conversion may not
imply growth of the instability. In the present case, the
eddy energy is positive definite and use of the energy
equation is illuminating. The energy equation for the
perturbations is obtained by adding u*-(1a), v*-(1b),
p* po,-(1c), and p*-(1d), where the asterisks repre-
sent the complex conjugate. In final zonally averaged
form it is given by

_WUOy - WUOZ - a(PO)U_ﬁ - (W)y - (_@)z

= ab[w T+ ’3;7%] = 6E2, (2)
where
alpy) = — 2
P* pOz

is proportional to the isopycnal slope (dz/dy|,) and an
overbar denotes a zonal average. The first three terms
classically represent the conversion processes that can
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lead to barotropic, Kelvin~Helmholtz, and baroclinic
instability, respectively. Throughout, we will use these
designations when discussing the energy budget, but
we wish to note here that the physical significance of
these terms is not unique (Plumb 1983). For example,
the barotropic term ( —uvU,,) and the K-H term could
also be responsible for the conversions occurring in an
inertially unstable jet and the baroclinic term
[a(po)up], and the K—H term could be associated with
the conversions that occur in the instabilities that in-
creasingly are being identified as frontal instability.
The fourth and fifth terms represent the wave flux di-
vergence, which may be important locally in redistrib-
uting wave energy, but are zero in domain average. The
right-hand side is wave transience, which here repre-
sents the growth of perturbation energy due to insta-
bility. When we discuss the energy budget of a partic-
ular instability, we will quote the contributions from
these mechanisms as a percentage of the domain-av-
eraged transience term. These percentages will not ex-
actly total to 100% as there is some numerical error in
the solutions that is magnified in computing the derived
fields. A large residual in the energy budget, however,
is indicative of a poorly resolved solution or a spurious
root from the eigenvalue solver, which must be treated
with care.

In classical stability theory, the mean state is defined
such that only one of the above mechanisms is active
and the energy equation leads to the appropriate nec-
essary condition for instability. Because there are three
possible mechanisms of instability, things are more
complicated, since, in this formulation, it is the sum of
these terms, integrated over the domain, being positive
that implies instability. This is a symptom of the energy
budget losing its usefulness in classifying instability. In
fact, if you employ the alternate view of the wave-mean
interaction through the use of the generalized Lagrang-
ian mean (GLM) formalism (e.g., Andrews and Mc-
Intyre 1976, 1978; Boyd 1976; McPhaden et al. 1986),
the reasons for the failure of an energy classification
scheme become clear. Due to the tight coupling of the
background mass and momentum fields implied by
thermal wind, the individual eddy fluxes of mass and
momentum cannot act independently to change the
background state. Therefore, any process that attempts
to extract KE or PE from the background state must
also cause an adjustment of the other energy form.
Therefore, any attempt to classify an instability of a
continuously stratified, rotating fluid strongly sheared
both laterally and vertically, as either baroclinic or
barotropic or to distinguish between them is too sim-
plistic and potentially misleading.

3. Over-reflection

While the computation of unstable eigenvalues and
eigenvectors will enumerate the most unstable linear
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instabilities for a particular background state, it tells
you little about why those eigenvalues are the most
unstable. The computation of the energy balance,
which may categorize the instability, does not fully il-
luminate the mechanism of instability either, it primar-
ily confirms that the eigenvector has a structure con-
sistent with growth. Moreover, these methods do not
provide any general rule for prediction of eigenvalues
under different conditions. Therefore, changing the
flow structure or speed usually means the entire com-
putation needs to be repeated. On the other hand, the
ideas of wave over-reflection provide an insightful
mechanistic framework for interpreting the instability
of a wide range of background flows. In addition, it
supplies a means to estimate the phase speed ¢ and
growth rate o; of unstable waves for simple flow ge-
ometries.

The basic geometry necessary for wave over-reflec-
tion is depicted in Fig. 1 for a barotropic fluid. First, a
region of wave propagation (region I) is needed, in
order for there to be waves to over-reflect. Second,
there also must be a *“critical’’ surface (y = y.), where
the energy exchange between the wave and background
flow takes place. This surface is either the classical crit-
ical surface, where o = kU,, or the effective inertial
latitude (EIL), where By(B8y — Uy) = (0 — kUp)>.
Third, this critical surface must be separated from the
wave region by a narrow region (y. <y < y;) in which
the waves are evanescent (region II). To appreciate the
importance of this region, consider the case of linear
waves radiating toward the critical surface from within
region 1. In the absence of the evanescent region, the
situation is like that of Bretherton (1966) and Booker
and Bretherton (1967) for gravity waves, in which the
group velocity of the waves tends to zero as they ap-
proach the critical surface so that they do not arrive
there in a finite time (i.e., they are absorbed). The pres-
ence of an evanescent region in ‘‘front’’ of the critical
surface, introduces a turning point, which turns the
waves back in finite time. If region II (which is anal-
ogous to a potential well) is narrow enough, the waves,
in addition to being turned back, can runnel through it
and, thereby, interact with the critical surface. This in-
teraction can produce significant energy and/or mo-
mentum exchange, which can lead to wave amplifica-
tion. The amplification, which is directly related to the
amount of tunneling, is inversely related to the thick-
ness of evanescent region. Takehiro and Hayashi
(1992) show clearly that over-reflection of shallow wa-
ter waves is related to tunneling. In their case, the en-
ergy of the tunneled signal is negative, as required for
an increase in the positive energy of the over-reflected
wave. This demonstrates the importance of these neg-
ative energy waves in the stability theorems of Ripa
(1983, 1990, 1991). Fourth, in order for the waves to
tunnel, there must be a wave-sink region (region III)
“‘behind’’ the critical surface. Finally, for the over-re-
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flection to lead to an exponentially growing instability,
a reflecting surface (y = y,) is needed to bound region
I. This surface is necessary to return the over-reflected
waves back to the critical surface (y = y.) for succes-
sive over-refiection to occur.

The combination of the two reflective surfaces (at y
=y; and y = y,) creates a quantization condition, which
leads to an eigenvalue problem for the possible unsta-
ble modes of the system. This quantization, depends on
the phase changes of the wave in propagating across
region I and those introduced upon reflection at each
end. For unstable modes, the quantization is further
constrained by the need for the evanescent region (re-
gion IT) to be narrow, to allow significant interaction
with the background flow to occur. For this region to
be narrow, the critical surface, y., must lie physically
near the turning point at y;, which for continuous flow
profiles, implies that ¢ ~ U(y;). These conditions act
to limit the range of frequencies and wavenumbers of
the possible unstable waves. The growth rate is then
determined by both the strength of the over-reflection,
which depends on the thickness of region II (and hence
the background shear), and the time it takes for energy
to propagate back and forth across region I (Lindzen
and Rosenthal 1976; Lindzen et al. 1980).

To illustrate these ideas in a simple context, in the
remainder of this section we consider the barotropic
instability of a depth-independent current on a (3 plane.
For harmonic, nondivergent disturbances of zonal
wavenumber k and phase speed c, (i.e., ¥ ~ e**~),
we have

U, + [%}"—_U"Cﬂ - kz]\I! =0.
= 3)
R

Lindzen and Tung (1978) demonstrated that barotropic
instability can be interpreted as the over-reflection of
laterally propagating Rossby waves. Equation (3) al-
lows meridional Rossby wave propagation only in
regions where the refractive index R® is positive, has
turning points where ® = 0, and has critical surfaces
where ¢ = U,. Thus, depending on the background
flow, this system has all the necessary ingredients of
the geometry for over-reflection depicted in Fig. 1. The
locations of the turning points, unfortunately, depend
upon the characteristics (o, k) of the unknown wave
field. However, for (U, — ¢) = O near the turning point
(i.e. a narrow region II'), the turning point very nearly
coincides with the inflection point in the background
flow (where 8 — U,,, = 0), suggesting that, in practice,
the flow speed at the inflection point should also be
indicative of the phase speed for instability. Ripa
(1989) has shown that, for equatorial Rossby waves,
the phase change introduced at turning latitudes is
—(7/2). Therefore, for quantization of the waves, the
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FiG. 1. The geometry of wave over-reflection (adapted from Lind-
zen 1978). A wave incident from the right is turned back at the point
of zero refractive index, y;, after having been amplified through in-
teraction with the critical surface at y.. This reflected wave is then
returned by turning/refiection at y,.

phase change across the over-reflecting region should
be an odd multiple of 7/2.

For a simple example of the application of over-re-
flection theory in describing the instability of equatorial
flow, consider an idealized westward, barotropic zonal
shear flow of Gausstan meridional structure straddling
the equator

Us(y) = Ue 9. 4)
For a flow with a meridional scale of a, = 200 km and
maximum westward speed of U, = —150 cm s}, we

find, from the solution of the full eigenvalue problem,
only one instability. This instability has a maximal
growth rate of 0.067 d ' (an e-folding time of 15 days)
at a zonal wavelength of 1272 km and a phase speed
of —131.7 cm s ™!, This phase speed, as expected from
over-reflection theory, is very near the background flow
speed of —126.3 cm s ™' at the inflection point. In ad-
dition, the meridional pressure work, p, shown in Fig.
2d, as computed from the solution to the eigenvalue
problem, is directed away from the critical surface. This
confirms that over-reflection is occurring, as it signifies
that the incident waves are being amplified upon re-
flection.

The over-reflection geometry under these conditions
is depicted in Fig. 2. The lightly shaded areas are the
over-reflective regions (regions 1), the darker area is
the wave-sink region (region III), and the unshaded
strips between them are the evanescent regions
(regions II, where the square of the meridional wave-
number, /2, is negative). In this symmetric case, the
wave sink region plays that role for over-reflective
regions on both sides of the equator. This could intro-
duce a complication to the quantization condition, if
the signals that tunnel through region Il and cross re-
gion III interact with those from the opposite side.
However, region III is bounded on both sides by critical
surfaces without evanescent regions. Therefore, the
signals crossing region III will slow dramatically upon
approaching the opposite critical surface and, as a re-
sult, will be less likely to interact. '

The detailed application of over-reflection requires
the consideration of the wave propagation character-
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istics. In practice, the over-reflection computations
need to be done at many wavenumbers and the strong-
est growth determined. Here, to illustrate, we use the
knowledge from the eigenvalue solver to consider only
the situation for the most unstable wavenumber (A
= 1272 km) in the above flow field. Computing the
over-reflection parameters as a function of phase speed,
we obtain Fig. 3. In the upper panel we plot the phase
change that occurs in the wave field in propagating
across the over-reflection region (region I). There are
two curves in this panel, because there are two possible

. placements of the over-reflecting region. The first curve

(on the left) is the case shown in Fig. 2, where the
over-reflecting region is located poleward of the critical
surface (i.e., | y;| > |y.|). This case obtains when the
westward phase speed of the instability exceeds the
background flow speed at the point where R = 0. The

-6° -4° 20

0 2 4° 6
Latitude

FiG. 2. The geometry of wave over-reflection for the most rapidly
growing instability of a westward, barotropic, equatorial, Gaussian
jet. Light shaded region is the over-reflection region (region I of Fig.
1) and the dark shaded region is the wave sink region (region III of
Fig. 1). (a) Meridional profile of the mean flow (cm s™') and mean
PV gradient (dashed, normalized by X107 cm™! s7"); (b) squared
meridional wavenumber (normalized by X10™"* cm™2); (c) meridio-
nal Rossby wave group velocity (cm s™'); (d) meridional wave pres-
sure work (Up).(normalized to 1).
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other curve (on the right) occurs when the over-reflect-
ing region is equatorward of the critical surface (i.e.,
| y:] < |v.]), so that regions [ and IIT are reversed from
Fig. 2; in which case, region I is now embedded within
the region of supercritical flow and both ends have
over-reflecting surfaces. The dashed line denotes the
phase speed for which there is a m/2 phase change
across region 1. This is the wave that is perfectly quan-
tized within region 1. By comparison, the most unstable
wave (dotted line) found by the eigenvalue solver oc-
curs at a slightly lower phase speed and has a phase
difference of 91.4°, a value very close to n/2. The
phase difference does not, however, determine the
growth rate of the instability. The growth rate is set by
the propagation time back and forth across region I, 27,
and the thickness of the evanescent region, 6. In the
lower panel of Fig. 3, we plot the propagation time (7)
across region I and the thickness of the evanescent re-
gion (6). The most unstable phase speed is not the one
with the thinnest evanescent region nor the shortest
propagation time, but a trade-off between these two
effects.

If we halve the meridional scale of the flow to 100
km, the background flow speed at y; becomes —101.8
cm s™'. We find from the eigenvalue solver the most
unstable wave now occurs at a phase speed of —98.1
cm s ' and a wavelength of 1247 km. Again the phase
speed is close to the flow speed at the inflection point
but is now slightly slower (this situation is analogous
to the right-hand curves of Fig. 3). Therefore, the over-
reflection region is within the zone of supercritical flow
and is bounded by two over-reflecting surfaces. The e-
folding time for this instability is 6.3 days, roughly half
that for the above case where only one over-reflective
surface is present. This is reasonable, as the transit time
across the respective over-reflection regions are com-
parable.

For more realistic equatorial flows, the geometric
considerations associated with the wave over-reflection
construct are more complicated than the idealized case
above. For example, for a symmetric pair of barotropic
SEC-like jets (the barotropic analog of the baroclinic
flows discussed later), there is the possibility of over-
reflection poleward of each jet, between the jets, and/
or within each jet. Of these five possible over-reflection
regions, the one between the jets and the ones within
each jet core would have over-reflection on both sides.
Under some conditions, the over-reflection region be-
tween the jets, which straddles the equator, can further
split into two regions with non-over-reflecting turning
surfaces on each of their equatorial sides. Solutions to
the eigenvalue problem are those that are most rapidly
growing in a global sense. Therefore, the most rapidly
growing wave could possibly be near quantization in
more than one of the over-reflective regions instead of
being exactly quantized in only one of them and far
from quantization in the others. In addition, including

PROEHL

607
1200
e
g 90°
§ 1
g o |
L |
I
® s
25d l
T W d ! 80km
§ |
J |
= 154 | ) +60km :_="]
g %
S ]
$ e \ L0ken g
E | T 4
T
5d i -20km
-150 <140 <136 <120 -110
Phase Speed (cm/s)

FIG. 3. The dependence of phase change (upper panel), propagation
time (lower panel, 7) across the over-reflective region and the thick-
ness of the evanescent region (lower panel, §) on the phase speed at
the most unstable wavelength for the flow in Fig. 2.

realistic vertical shear in the background flows intro-
duces the possibility of waves radiating both vertically
and meridionally (gravity, Rossby—gravity, and/or
Rossby waves) and, therefore, makes determination of
the propagation paths more difficult.

4. Results
a. Idealized Gaussian jets

We begin by investigating the stability characteris-
tics of idealized models for the EUC and the SEC, that
of isolated Gaussian jets in an ocean with constant N
at its poleward extreme (10°S here). For this part of
the study the flow is given by

—(v—v.}2 2 _(r,—» )2 2
Uo(y, Z) — U,,e[ =¥y 12a5—(z2—z)"2e7]

(3)

The square of the buoyancy frequency, N2, is set to a
constant value of 8.883 X 10~ s 7% at the southern wall
and is in thermal wind balance with the jet elsewhere.
This value was chosen to yield a first vertical mode
eigenspeed of 300 ¢cm s ' in the absence of background
flow when the ocean depth is 1000 m, as assumed here.

In the next two subsections, we consider flows cen-
tered at mid-depth (500 m). This placement ensures
that the system retains vertical symmetry allowing an-
other check on the numerical solution. For these ide-
alized flows, the model domain extends from 10°S to
the equator and from z = —1000 m to z = 0 m with
meridional and vertical grid spacings of 20 km and 20
m, respectively. In general, we find multiple growing
solutions for a given background state, and we focus
on those with the fastest growth. In addition, we begin
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our search at a wavelength, A, of 1000 km, this being
the dominant length scale for the TIWs. There is, there-
fore, a possibility that instabilities that exist only at
much larger (A > 5000 km) and much smaller zonal
scales (A < 250 km) will be missed. Once an unstable
root is found, the unstable portion of the dispersion
curve is traced and the wavenumber of maximal growth
rate determined.

1) EASTWARD EQUATORIAL JET

Our solutions indicate that an isolated eastward
Gaussian jet centered on the equator possessing scales
similar to the EUC (i.e., U, = 100 cm s™', a, = 100
km, @, = 100 m) is essentially stable, consistent with
the results of Philander (1976) for a two-layer system.
An eastward jet can, however, become unstable if it is
sufficiently strong or narrow. For example, the above
flow is weakly unstable if its magnitude is increased to
150 cm s ™. For this flow (which is shown in Fig. 4)
the fastest-growing instability has a rather weak max-
imum growth rate of 0.011 d ' (an e-folding timescale,
p = 88 days) at a wavelength of 929.8 km; its period
is 49.5 d, giving it an eastward phase speed of 21.7
cm s~ ', Its u structure (Fig. 5) is antisymmetric me-
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ridionally (no symmetric u instabilities were found),
which would lead to a meandering of the jet core, as
was seen by Taft et al. (1974 ) during a period of strong
EUC and weak or nonexistent SEC. In this figure (and
all subsequent wave figures), the area of supercritical
flow (where [U;| = |Re(c)]) is shaded (the critical
surface lies at the edge of the shading), the location of
the effective inertial latitude (EIL) is drawn with a
dashed bold line, and the location of the zero of the
mean meridional potential vorticity gradient (ZPVG)
along isopycnals is drawn with a solid bold line. In
these equatorial cases, the slope of the isopycnals may
get large so the potential vorticity and its gradient are
evaluated along constant p. The potential vorticity
along isopycnals takes the form in the Cartesian vari-
ables:

Poz- (6)

4

2
Q(}’, Z)|p= [ﬂy.._ on_'_ﬂyUOz]

N’Z

It is clear from Fig. 5, that the instability is confined
primarily to the region of supercritical flow and is en-
hanced about the EIL. This enhancement is localized
to the two places above and below the core where the
isopycnal slopes are strong.
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FIG. 4. Mean state for the idealized Equatorial Undercurrent (EUC) with a,, @, = 100 km, 100 m: (a) velocity
(cm s7Y); (b) isopycnal surfaces in o, units (arbitrary additive constant); (c) meridional gradient along isopycnals of
background potential vorticity (Q) (see text for definition of Q) a; (d) isopycnal slope (p,/p,).
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surface), the zero of the meridional gradient along isopycnals of the potential vorticity (thick line), and the effective
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The spatial structure of the conversion terms in the
energy budget, (2), are shown in Fig. 6. Quantities
superimposed on the contours are the same as in Fig.

5, except for the addition of the pressure-work vectors
(vp, wp). It is clear that the regions of strongest wave
growth (Fig. 6) are localized upon the EIL, and their
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FIG. 6. Energy conversion mechanisms for the unstable EUC root. The pressure-work (ip, wp) vector field is super-
imposed (in addition to the quantities mentioned in Fig. 5). Each panel normalized to 1, independently, with max/min

at lower left.
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structure closely matches that of the conversions as-
sociated with the K—H term (Fig. 6). It is interesting
that these conversions do not occur at all positions
along the EIL but are strongest about the points where
the largest isopycnal slopes intersect this surface (cf.
Fig. 4d). It is also evident that the significant barotropic
production is on the flanks of the jet (Fig. 6) with baro-
tropic loss occurring in the region of strongest wave
growth, the latter property suggesting a less active role
for barotropic production. On the other hand, the wave
pressure work shows that there is active wave radiation
from the region of barotropic production on the flanks
into the region of rapid wave growth, suggesting that
the barotropic production does help to drive the insta-
bility.

The domain-averaged energy budget suggests that
this instability is due primarily to vertical shear (K—H
type, 95.9%), although barotropic instability (55.1%)
is indicated as well. These two total more than 100%
because the instability loses significant energy working
against the mean stratification (—43.8%). The strong
K—H component to this instability arises from a region
of relatively weak N? existing at the jet core (~6
X 1073 s72), which leads to a minimum Ri number of
1.05. While this Ri number does not satisfy the classical
K—H criterion (Ri < 1/), it nearly satisfies the crite-
rion for inertial instability in the absence of meridional
shear [Ri < 1, see Andrews et al. (1987)]. Introducing
a more realistic thermocline structure by adding to the
constant N? value, a Gaussian term of amplitude 1.2
X 10™* s 72 centered at 7, = 500 m with a vertical scale
of 100 m, raises the minimum Ri number to roughly 2.
This causes the relative contributions of the two insta-
bility mechanisms to be nearly equal (barotropic: 69%,
K-H: 61%). The structure of the instability in both
cases is basically the same, but surprisingly, the growth
rate in the stronger N case is roughly twice (p = 45.4
days) that of the weaker N case.

The theory of wave over-reflection can nicely ex-
plain this result. Tai (1983) has shown that the pres-
ence of both an EIL and a critical layer is sufficient for
over-reflection of inertia—gravity waves, regardless of
the value of Ri. The geometry of over-reflection, in
these cases, arises, primarily, from the over-reflection
of vertically propagating inertia—gravity waves. In the
context of Fig. 1: region I lies between the upper and
lower EIL within the jet core, region II lies between

‘the EIL’s and the critical surfaces, and region III lies
above and below the critical surfaces. The increased
growth rate for the stronger N case, then is principally
due to a decrease in the vertical propagation time of
the over-reflected inertia—gravity waves across region
1 due to the increased N. The presence of significant
barotropic production suggests that a portion of the in-
stability arises from the lateral over-reflection of
Rossby waves from the ZPVG line. For these waves,
region I lies equatorward of the ZPVG surface, region
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IT lies between the ZPVG surface and the critical sur-
face at the flanks of the flow, and region III lies pole-
ward of the critical surface.

2) WESTWARD EQUATORIAL JET

It has long been known that, due to the effects of
both 8 and divergence, westward flow on an equatorial
B plane was potentially more unstable than eastward
(Lipps 1963; Howard and Drazin 1964; Philander
1976). The results herein are in agreement with this.
For example, for the westward version of the stable
eastward EUC (U, = —100 cms™', o, = 100 km, a,
= 100 m), we find eight distinct unstable roots that e-
fold in less than 50 days, the fastest doing so in roughly
8 days. The mean state for the westward version of the
flow in Fig. 4 (i.e., U, = —150 cm s~!) is shown in
Fig. 7. For this flow we, again, find numerous instabil-
ities, the fastest-growing one having a rather large
growth rate of 0.19 d7' (e-folding time of u = 5.3
days). This instability has a period of 18.5 days and a
wavelength of —1545 km, giving it a westward phase
speed of —96.5 cm s~'. The structure of the perturba-
tion zonal velocity for this instability is shown in Fig.
8. The structure is trapped to the flanks of the jet and
has a maximum amplitude in the vicinity of the ZPVG
and critical surfaces. The other instabilities on this flow
(not shown), which grow less rapidly, are dipolelike
structures above and below the core depth and are sim-
ilarly tied to the ZPVG and critical surfaces.

The most rapidly growing instability draws essen-
tially all its energy through the barotropic production
term (99%). The structure of the conversions, for this
instability, are shown in Fig. 9 with the same auxiliary
quantities as in Fig. 6 superimposed. In contrast to the
eastward flow, where the conversions were tied to the
EIL, the energy conversions here (along with the wave
structure) are more closely tied to the ZPVG surface.
The structure and barotropic nature of this production
suggests that the ideas of over-reflection applied to lat-
erally propagating Rossby waves, at the depth of the
jet core, are appropriate. Indeed, we see that the phase
speed and growth rate of this instability closely matches
that of the instability in the westward barotropic flow
of meridional scale 6, = 100 km, discussed at the end
of the over-reflection section. The over-reflection ge-
ometry here is that region I lies equatorward of the
ZPVG surface at the depth of the core, region II lies
between the ZPVG and critical surfaces, and region I11
lies poleward of the critical surface.

Because nearly all westward cases are unstable, we
proceed to investigate the dependence of these roots on
the scales of the mean state. The dependence of the
wave parameters of the fastest growing waves in the
westward jet upon the scales of the jet are given in
Table 1. As the vertical scale of the flow is decreased,
we find that 1) the vertical scale of the waves decreases
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to match, 2) the meridional scale shrinks slightly, 3)
the wavelength of the fastest growing wave increases,
and 4) the growth rate increases slightly. In general,
the phase speed of the most unstable wave is relatively
insensitive to the vertical scale of the flow. This prop-
erty, along with the changing wavelength, implies an
increase in the period of the most unstable wave as the
vertical scale decreases. Decreasing the meridional

Amplitude

Depth (m)

scale of the flow causes a significant reduction of the
most rapidly growing wave’s phase speed from
O0(—133 ecms™') to O(—96 cm s™') and more than
doubles its growth rate. The strong dependence on the
meridional scale of the flow and the wave structures
(not shown) suggest that the operative wave fluxes in
these instabilities are due to meridionally radiating
Rossby waves that undergo over-reflection near the

Latitude (10? km)

1
Latitude (10* km)

FiG. 8. Zonal velocity structure for the most rapidly growing instability
in the westward equatorial jet in Fig. 7 (see caption in Fig. 5).
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critical surface. Comparison with the results for the
barotropic flow (section 3) shows that the phase speed,
wavelength, and growth rates are consistent with the
over-reflection results. This clearly demonstrates that
the mechanism of instability can be understood through
lateral over-reflection at the depth of the jet core. In the
narrower jet (6, = 100 km), the over-reflection occurs
within the jet with both ends of the over-reflection re-
gion (region I) terminated with over-reflecting sur-
faces, while in the wider jet (6, = 200 km), the waves
over-reflect on the flanks of the jet.

3) WESTWARD OFF-EQUATORIAL JETS

Due to the presence of the EUC, the westward-flow-
ing SEC is usunally located somewhat off the equator.
It is of interest, therefore, to investigate the dependence
of the instability upon the meridional location of the
jet. In addition, it has been suggested, but not fully
investigated, that baroclinic instability is likely to be
suppressed near the equator (Philander 1976). With the
SEC in mind, we chose to place jets at the ocean surface
and performed a series of numerical experiments with
the flows at 2°, 4°, and 6°. In these experiments we
specified the westward Gaussian mean flow to be of
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TABLE 1. Westward equatorial jet cases.

Crmax ) M

6, (km) 6, (m) (cms™) (km) GV
200 10000 —-131.7 1272.0 15.5
200 500 —133.3 12919 15.4
200 100 -136.0 1893.3 13.2
100 10000 -98.1 1247.8 6.3
100 500 ~-93.8 1247.8 5.8
100 100 ~-96.5 1545.0 5.3

magnitude 50 cm s~ with decay scales of 100 km and
100 m in y and z, respectively. Due to the assumption
of meridional symmetry, with the flow placed off the
equator, (y. # 0), we center an identical Gaussian jet
about y = —y,. The background N? was, again, set to
a constant value of 8.883 X 1073 s72 at the poleward
extreme (10°S). The background state for the flows at
*4° is shown in Fig. 10. The background states for the
jets at =2° and +6° (not shown) are similar except the
maximum isopycnal slope across the flow are half and
twice as strong, respectively.

The wave properties of the most rapidly growing in-
stability in each of these flows are given in Table 2. As
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FiG. 9. Energy conversion mechanisms for the most rapidly growing instability
of the westward equatorial jet in Fig. 7 (see caption in Fig. 6).
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the core of the flow moves poleward, the most unstable
wave becomes longer and slower. The structure of the
perturbation zonal velocity for the most unstable wave
in the flows at +4° is shown in Fig. 11 in the upper
300 m of the 500-m computational domain whose ver-
tical grid spacing was 10 m. For the flow centered at
6°, the computational domain was extended out to 12°
from 10° with grid points added to maintain the 20-km
spacing. The general structure of the most rapidly
growing instability in all three flows does not change
dramatically, so only the results from *4° are shown.
In all three flows the instabilities have largest amplitude
on the flanks of the flow in the neighborhood of the
critical surface (as in the subsurface equatorial jet re-
sults) with the amplitude slightly stronger on the equa-
torial side of the jet in the cyclonic shear zone. One
difference that does appear is that as the flow moves
poleward, there is an increase in the amplitude below
and poleward of the jet core. The depth independence
of the signal poleward of the jet (poleward of 7°) sug-
gests that there is radiation of wave energy poleward
into free barotropic Rossby waves as seen in the long-
wave results of Proehl (1990).

The energy conversions in the case of the +2° flows
are dominated by barotropic instability (88% in basin
average). As the jet moves poleward and the isopycnal
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TABLE 2. South equatorial jet cases. The BT/BC ratio is the basin
average of urU,/(uwU, + avp) so that the baroclinic part inchudes
both the classical K~H and baroclinic terms.

Latitude BT/BC
(deg) Crmax Mnax T ratio
2 -36.9 762 36.7 6.59
4 ~-25.9 1142 36.0 1.10
6 ~19.6 1537 56.6 0.17

slopes associated with it increase, the fastest growing
instability begins to draw more energy via baroclinic
processes (see Table 2) so that by 6° the instability
draws 72% of its energy from baroclinic conversion
and 13% from K—-H, demonstrating the importance of
the isopycnal slope in determining the mix of baro-
tropic/baroclinic conversion. The structure of the en-
ergy conversions for the instability in the flow at +4°
is shown in Fig. 12. We see that the regions of baro-
tropic and baroclinic conversion, while roughly of
equal magnitude, are located at different points in the
flow. In addition, the most apparent feature in all con-
versions (in this case as well as the jets at +2° and
+6°) is that the critical surface (edge of the shaded
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FiG. 11. Zonal velocity structure of the most rapidly growing instability
in the SEC centered at £4° (see caption in Fig. 5).

region) is closely associated with the ZPVG surface
(thick line) and that this is the region from which the
instability draws its energy, in direct agreement with
the ideas of over-reflection. The phase speed of the
most rapidly growing instability is, therefore, naturally
constrained to fall near the flow speed at some point

Depth (m)

Max: 8.70E-07

on the ZPVG surface. This assures that the evanescent
region (region II) is narrow so that the waves can
strongly interact with the background flow. In terms of
the over-reflection arguments the change in energy
source from a barotropically to a baroclinically domi-
nated instability is associated with a change in the over-
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FiG. 13. Mean state representing period A of Luther and Johnson (1990):
(a)—(d) as in Fig. 4 (see their Figs. 21 and 22).

reflecting waves from more laterally propagating
Rossby waves to more vertically propagating ones
(Lindzen et al. 1980). In other words, in the over-re-
flection view the instability mechanism is identical;
only the energy source terms differ. The location of the
maximum energy conversion of the two types (Figs.
12a,b) shows clearly this difference. The barotropic
conversion is localized on the flanks of the flow, while
the baroclinic conversion is found underneath the jet
core. The wave structures, however, do not show a dra-
matic change as the instability adjusts from a barotropi-
cally dominated one to a more baroclinic one, although
they do tend to become somewhat stronger below the
core as the flow moves poleward. The wave flux vec-
tors show signs of both lateral propagation across the
core and vertical propagation below. In a flow sheared
both vertically and meridionally, as here, the propa-
gation path of the over-reflected waves will probably
not be purely meridional or vertical.

b. Realistic equatorial flows

We finish by considering the instability of mean
states more representative of those observed in the trop-
ical Pacific. There is an inherent difficulty in comparing
the results of stability analyses to observed equatorial

flows. Stability analysis seeks out the most rapidly
growing wave, arguing that this will be the one to dom-
inate at long times. However, the e-folding times of the
instabilities (~ 15 days) are not that much shorter than
the period of the instabilities ( ~30 days), which in turn
are not much shorter than the timescale of the evolution
of the background state (~100 days). Consequently, it
is not clear how much the observed TIWs should look
like the most unstable wave. On top of this, the aver-
ages taken from observations, necessarily, have some
of the effects of the instabilities within them, begging
the question: What is the background state? Nonethe-
less, we will show that the principle features of the most
unstable waves in some representative background
flows are similar to those seen in the observations.
Our approach will be to attempt comparison with the
results of Luther and Johnson (1990, hereafter LJ).
Two of the three reasons that their study was chosen
are that they have relatively detailed spatial observa-
tions of the subsurface flow along with estimates of the
primary energy conversion mechanisms. Due to their
somewhat sparse temporal resolution, there is some
question of the confidence in their estimates of the
background state as well as those for the energy con-
versions. The acoustic Doppler current profiler
(ADCP) observations in LJ, however, were limited to
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the depth range of —120 m < z < —30 m. As a result,
the lower portion of the EUC and the near-surface flow
were not sampled. For the purposes of modeling, the
background state is defined over the larger region —200
m < z < 0 m so that the model grid extends from the
surface to below the region of strong flow. While the
background state below 120 m, therefore, is more’spec-

ulative, the structures used are not inconsistent with the
deeper profiling current meter results of Firing et al.
(1981). Early tests on other background states, emu-
lating that of the Wrytki and Kilonsky (1984) mean
state, for example, yielded a background state that was
relatively stable. This was assumed to be due to the fact -
that a mean state derived from long averaging times
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F1G. 15. Zonal velocity structure of the most rapidly growing instability
in the mean state during period A (see caption in Fig. 5).
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FIG. 16. Zonal velocity structure of the most rapidly growing instability
in the mean state during period B (see caption in Fig. 5).

(such as in Wrytki and Kilonsky) overly smooths the
fields so that they do not necessarily represent the back-
ground state at any particular instant very well. Clearly,
the observations show that equatorial flows are unstable
only during part of the annual cycle. This result pointed
to the need for an observed background state computed

Depth (m)

using a shorter averaging interval. This is the final rea-
son for using the LJ results: they subsampled their se-
ries into short (3—4 month) averaging periods. We will
limit attention to the first two of their three periods as
these instabilities are associated with the EUC-SEC.
The instability in their third period (period C) appears
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FiG. 17. Energy conversions in the most rapidly growing instability
in the mean states in period A (see caption in Fig. 6).
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FiG. 18. Energy conversions in the most rapidly growing instability
in the mean state in period B (see caption in Fig. 6).

to be due to an instability in the deep countercurrent
front and is not treated well in the present formulation
of this model. The elimination of w in deriving the three
equations of the model involves divisions by N?, mak-
ing the treatment of fronts (where N> — 0) difficult.
The investigation of the role of intense fronts is cur-
rently under way. Their first period (period A ) is during
the so-called instability wave season from late July
1979 to mid-November 1979. The second period (pe-
riod B) is during boreal winter from mid-December
1979 to mid-March 1980.

We will show that instabilities found in flows similar
to those reported by LI, which have a different mix of
energy sources, are related to the presence of a critical
layer, suggesting the ideas of over-reflection are rele-
vant to the observations. In Figs. 13 and 14, we present
the background states used to approximate those from
the two time periods defined in LJ (see their Figs. 21
and 22, periods A and B). The primary differences
from the flows seen in LJ are the meridional symmetry
imposed here and the neglect of the westward flowing
North Equatorial Current (NEC) poleward of 8°-9°
Due to the neglect of the NEC, the isopycnals do not
slope downward at the poleward edges of the domain
as in the observations. Period A is characterized by a

strong EUC, a well-developed SEC in the Northern
Hemisphere, and an NECC with little vertical shear.
Period B, in contrast, has a weaker EUC and the NECC
has significant vertical shear. In both periods, the iso-
pycnals show the characteristic bowing near the core
of the EUC, a well-defined countercurrent front with
steeply sloping isopycnals on the northern flanks of the
NECC, and relatively uniform density in the mixed
layer.

The structure of the u fields for the most unstable
waves in these two periods are shown in Figs. 15 and
16, with the wave parameters at the lower left. Whereas
these two instabilities have similar phase speed and
growth rate, both of which fall within the realm of ob-
servations, their wavelength, period, basin-averaged
energy budgets, and wave structure are quite different.
During period A the instability (wave A) has a wave-
length of 956 km, a period of 35 days, and draws the
majority of its energy through a barotropic mechanism
(66% barotropic, 28% baroclinic, and 6% K—H in ba-
sin average). Conversely, during period B, the insta-
bility (wave B) is shorter (A = 612 km), of higher
frequency (20-day period), and is overwhelmingly
baroclinic (1% barotropic, 127% baroclinic, —20% K-
H). Structurally, wave A is strongly surface trapped
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and enhanced equatorward of the critical surface on the
equatorial side of the SEC. In contrast, wave B has two
distinct maxima, one embedded within the supercritical
region on the equatorial flank of the SEC and the other
below and slightly poleward of the SEC core. In com-
parison to the results from the idealized flow cases,
these wave structures both appear to be more loosely
connected to the critical surface.

The structure of the energy conversions (Figs. 17
and 18), however, are closely tied to the critical sur-
face, showing the loose tie of the wave structures to the
critical surface to be illusory. During period A, the
barotropic conversion is clearly localized to two areas
in the neighborhood of the critical surface on either side
of the SEC. Similarly, the baroclinic conversion, sig-
nificant in both periods but dominant during period B,
is confined below and slightly poleward of the SEC
near the critical surface. The structure of the barotropic
conversions is similar to those observed by LJ during
these periods. The major difference is during period A
when the observations (L], Fig. 25a) show the maxima
closer to the equator is nearly an order of magnitude
greater than the one poleward of the SEC core. Perhaps
consistent with this, is that this maxima, in the model,
does not lead to significant growth in the wave field
(Fig. 17). The baroclinic conversions, within the
model, are similar to those during period B in LJ except
that the model conversions are closer to the equator.
This is likely due to a disagreement between the density
fields, since the baroclinic conversions in the model
map closely to the regions of strong isopycnal slope in
the imposed background state.

The complex nature of the background state (U, and
N?) precludes a direct application of the over-reflection
theory to predict phase speed, wavelength, and growth
rate. For example, from over-reflection ideas, we ex-
pect the phase speed of the instability to be near, but
slightly removed from, the speed of the background
flow on the ZPVG surface. During period A, the speed
of the flow on this surface ranges from —49.7 cm s ™'
to +11.2 cm s™! and during period B it ranges from
—479 cms™' to +33.5 cm s™'. In period A, this ef-
fectively limits the range of possible eastward instabil-
ities but only limits the westward ones to fall within
the range of the background flow while, in period B,
the restriction is not very useful. Therefore, in this re-
alistically complex flow, predicting the phase speed of
the instability from the zeros of Q, alone is only par-
tially useful. A further complication is that the proper
ray path to compute the propagation times and phase
changes along (to satisfy a quantization condition) is
unknown.

However, during period A, the extrema in the baro-
tropic and baroclinic conversions fall on the ZPVG line
near the critical surface. In addition, the extrema in the
K~H conversion during this period, although a minor
player in this instability, falls on the EIL (dashed bold
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line), which is the appropriate critical surface for the
inertia~gravity waves responsible for K—H (recall the
eastward flow results of subsection 4a(1)]. In period
B, the match of the critical line with the ZPVG line
occurs for the baroclinic conversion alone, consistent
with the domain-averaged energy budget results. In
other words, the phase speeds of both of these insta-
bilities nearly match the background flow speed on the
ZPVG line at the point(s) where the instabilities are
drawing their energy, as would be expected from over-
reflection. Even though over-reflection does not a priori
predict the phase speed of the instability, during both
periods, the structure of the energy conversions
strongly suggest that over-reflection is active, giving
another insight into the mechanism for instability.

The vector pressure-work fields gives a consistent,
albeit complicated, picture of the over-reflection. In pe-
riod A, pressure work is directed away from the regions
of barotropic conversion near 1° and 4°. These pres-
sure-work fields suggest over-reflection regions (re-
gion I) equatorward and poleward of the SEC. The
region poleward of the SEC, however, shows weak
wave growth, suggesting that it is not a controlling re-
gion for instability. In contrast, the pressure work as-
sociated with the baroclinic production below the core,
during both periods, is directed away from both sides
of the critical surface, delivering a mixed message. This
is likely due to the near-normal intersection of the
ZPVG line with the critical surface. This situation
could lead to over-reflection on both sides of the critical
surface, as suggested by the pressure work. In this case,
the structure of the index of refraction R, which deter-
mines the over-reflection geometry, will depend
strongly on the detailed structures of Q, and Uy — ¢
near the intersection. In the ocean, the upward over-
reflection within the flow would more likely lead to
instability due to confinement by the free surface,
whereas the downward over-reflection would leak en-
ergy down and westward, away from the flow, into the
deep ocean.

S. Summary

The instability of idealized equatorial flows can be
clearly understood in the context of the ideas of over-
reflection as discussed in a series of papers by Lindzen
and collaborators (for a review see Lindzen 1988). For
realistic flow configurations, where the mean state var-
ies rapidly in both directions, direct application of the
over-reflection theory is difficult, as the paths for wave
radiation are not known a priori. However, qualitative
agreement is seen in the locations and structure of the
energy conversions. Further work in applying over-re-
flection ideas to two dimensions needs to be done.

The cases studied here suggest that the instability in
the SEC, which is likely to appear for flows of oceanic
scale, is either over-reflecting equatorward of the SEC
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core or within the SEC jet itself. An implication of this
provides an explanation for the plethora of models of
TIWs, which all arrive at instabilities of similar phase
speed, wavelength, and growth rate that match obser-
vations despite being constructed around somewhat
different physical assumptions. The over-reflection the-
ory dictates that the controlling factors for the disper-
sion and growth characteristics of the most unstable
wave are the locations of the various reflection sur-
faces. Therefore, as long as the mean flow has a struc-
ture like that observed in the ocean, to which the mod-
els are all usually tuned, then the most unstable waves
are assured to fall near the oceanic ones in dispersion
space. Because one of the important surfaces is where
Q, changes sign, the mean flow speed there should be
indicative of the speed of the instability.

In addition, the ideas of Dickinson and Clare (1973)
and Geisler and Dickinson (1974) applied to this prob-
lem imply that the over-reflection mechanism is self-
limiting in that mean decelerations associated with the
instability will adjust the location of the ZPVG line
toward the critical line and destroy the geometry nec-
essary for over-reflection. This mechanism could par-
tially explain the limited duration of the actively grow-
ing instability wave season.
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